Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
1.
Methods Mol Biol ; 2799: 107-138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38727905

RESUMO

NMDAR-dependent forms of synaptic plasticity in brain regions like the hippocampus are widely believed to provide the neural substrate for long-term associative memory formation. However, the experimental data are equivocal at best and may suggest a more nuanced role for NMDARs and synaptic plasticity in memory. Much of the experimental data available comes from studies in genetically modified mice in which NMDAR subunits have been deleted or mutated in order to disrupt NMDAR function. Behavioral assessment of long-term memory in these mice has involved tests like the Morris watermaze and the radial arm maze. Here we describe these behavioral tests and some of the different testing protocols that can be used to assess memory performance. We discuss the importance of distinguishing selective effects on learning and memory processes from nonspecific effects on sensorimotor or motivational aspects of performance.


Assuntos
Aprendizagem em Labirinto , Memória de Longo Prazo , Receptores de N-Metil-D-Aspartato , Memória Espacial , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Camundongos , Memória de Longo Prazo/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória Espacial/fisiologia , Hipocampo/fisiologia , Hipocampo/metabolismo , Comportamento Animal/fisiologia , Plasticidade Neuronal/fisiologia
2.
Postgrad Med ; : 1-6, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38656827

RESUMO

BACKGROUND: Optimal cognitive functions, including working memory (WM), are crucial to enable trainee physicians to perform and excel in their clinical practice. Several risk factors, including on-call shifts, poor mental health, burnout, and sleep problems, can impair clinical practice in trainee physicians, potentially through cognitive impairment; however, these associations have not been fully explored. OBJECTIVE: This study investigated the effect of on-call shifts on WM among trainee physicians and its association with burnout, depression, anxiety, affect, and sleep. MATERIALS AND METHODS: This cross-sectional study involved 83 trainee physicians (45% male). We measured demographic and training-related factors including on-call shifts and working hours. We also assessed depressive symptoms (PHQ-9), both state and trait anxiety (STAI total score), burnout (OLBI total score), positive and negative affect scores (PANAS), and sleep disturbances (PSQI total score). WM was evaluated using spatial working memory (SWM) strategy scores that reflected performance and total error counts. RESULTS: Trainee physicians with more on-calls per month had significantly worse depressive symptoms, burnout scores, and sleep, as well as more negative affect. While controlling for covariates, being on-call more times per month was significantly associated with worse WM. Worse depressive symptoms and burnout scores were also significantly associated with impaired WM. CONCLUSION: Working more on-call shifts is associated with compromised WM. Trainee physicians who experienced more depressive symptoms and burnout had worse WM.

3.
Front Public Health ; 12: 1365589, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605880

RESUMO

Objective: Our network meta-analysis aimed to ascertain the effect of physical activity on the visual-spatial working memory of individuals with mild cognitive impairment and Alzheimer's disease as well as to propose tailored exercise interventions for each group. Methods: Employing a frequentist approach, we performed a network meta-analysis to compare the effectiveness of different exercise interventions in improving the visual-spatial working memory of individuals with mild cognitive impairment and Alzheimer's disease. Subsequently, we explored the moderating variables influencing the effectiveness of the exercise interventions through a subgroup analysis. Results: We included 34 articles involving 3,074 participants in the meta-analysis, comprised of 1,537 participants from studies on mild cognitive impairment and 1,537 participants from studies on Alzheimer's disease. The articles included exhibited an average quality score of 6.6 (score studies) and 6.75 (reaction time [RT] studies), all passing the inconsistency test (p > 0.05). In the mild cognitive impairment literature, mind-body exercise emerged as the most effective exercise intervention (SMD = 0.61, 95% CI: 0.07-1.14). In Alzheimer's disease research, aerobic exercise was identified as the optimal exercise intervention (SMD = 0.39, 95% CI: 0.06-0.71). Conclusion: The results of the subgroup analysis suggest that the most effective approach to enhancing the visual-spatial working memory of individuals with mild cognitive impairment entails exercising at a frequency of three or more times per week for over 60 min each time and at a moderate intensity for more than 3 months. Suitable exercise options include mind-body exercise, multicomponent exercise, resistance exercise, and aerobic exercise. For individuals with Alzheimer's disease, we recommend moderately intense exercise twice per week for over 90 min per session and for a duration of 3 months or longer, with exercise options encompassing aerobic exercise and resistance exercise.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/terapia , Disfunção Cognitiva/terapia , Disfunção Cognitiva/psicologia , Exercício Físico , Memória de Curto Prazo , Metanálise em Rede
4.
Hum Brain Mapp ; 45(5): e26573, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38544416

RESUMO

Humans can extract high-level spatial features from visual signals, but spatial representations in the brain are complex and remain unclear. The unsupervised capsule neural network (U-CapsNet) is sensitive to the spatial location and relationship of the object, contains a special recurrent mechanism and uses a self-supervised generation strategy to represent images, which is similar to the computational principle in the human brain. Therefore, we hypothesized that U-CapsNet can help us understand how the human brain processes spatial information. First, brain activities were studied using functional magnetic resonance imaging during spatial working memory in which participants had to remember the locations of circles for a short time. Then, U-CapsNet served as a computational model of the brain to perform tasks that are identical to those performed by humans. Finally, the representational models were used to compare the U-CapsNet with the brain. The results showed that some human-defined spatial features naturally emerged in the latent space of U-CapsNet. Moreover, representations in U-CapsNet captured the response structure of two types of brain regions during different activity patterns, as well as important factors associated with human behavior. Together, our study not only provides a computationally feasible framework for modeling how the human brain encodes spatial features but also provides insights into the representational format and goals of the human brain.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Rememoração Mental , Memória de Curto Prazo , Redes Neurais de Computação , Imageamento por Ressonância Magnética
5.
Front Behav Neurosci ; 18: 1326501, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549621

RESUMO

Identifying factors that influence age-related cognitive decline is crucial, given its severe personal and societal impacts. However, studying aging in human or animal models is challenging due to the significant variability in aging processes among individuals. Additionally, longitudinal and cross-sectional studies often produce differing results. In this context, home-cage-based behavioral analysis over lifespans has emerged as a significant method in recent years. This study aimed to explore how prior experience affects cognitive performance in mice of various age groups (4, 12, and 22 months) using a home-cage-based touchscreen test battery. In this automated system, group-housed, ID-chipped mice primarily obtain their food during task performance throughout the day, motivated by their own initiative, without being subjected to food deprivation. Spatial working memory and attention were evaluated using the trial unique non-matching to location (TUNL) and the five-choice serial reaction time task (5-CSRTT), respectively. The same set of mice learned both of these demanding tasks. While signs of cognitive decline were already apparent in middle-aged mice, older mice exhibited poorer performance in both tasks. Mice at both 12 and 22 months displayed an increase in perseverance and a decrease in the percentage of correct responses in the TUNL test compared to the 4-month-old mice. Furthermore, during the 5-CSRTT, they exhibited higher rates of omissions and premature responses compared to their younger counterparts. Additionally, the correct response rate in 22-month-old mice was lower than that of the 4-month-old ones. However, mice that had undergone cognitive training at 4 months maintained high-performance levels when re-tested at 12 months, showing an increase in correct responses during TUNL testing compared to their untrained controls. In the 5-CSRTT, previously trained mice demonstrated higher correct response rates, fewer omissions, and reduced premature responses compared to naive control mice. Notably, even when assessed on a visual discrimination and behavioral flexibility task at 22 months, experienced mice outperformed naive 4-month-old mice. These findings highlight the advantages of early-life cognitive training and suggest that its benefits extend beyond the cognitive domains primarily targeted during early training. The success of this study was significantly aided by the fully automated home-cage-based testing system, which allows for high throughput with minimal human intervention.

6.
Anim Cogn ; 27(1): 13, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429533

RESUMO

Chronic pain in humans is associated with impaired working memory but it is not known whether this is the case in long-lived companion animals, such as dogs, who are especially vulnerable to developing age-related chronic pain conditions. Pain-related impairment of cognitive function could have detrimental effects on an animal's ability to engage with its owners and environment or to respond to training or novel situations, which may in turn affect its quality of life. This study compared the performance of 20 dogs with chronic pain from osteoarthritis and 21 healthy control dogs in a disappearing object task of spatial working memory. Female neutered osteoarthritic dogs, but not male neutered osteoarthritic dogs, were found to have lower predicted probabilities of successfully performing the task compared to control dogs of the same sex. In addition, as memory retention interval in the task increased, osteoarthritic dogs showed a steeper decline in working memory performance than control dogs. This suggests that the effects of osteoarthritis, and potentially other pain-related conditions, on cognitive function are more clearly revealed in tasks that present a greater cognitive load. Our finding that chronic pain from osteoarthritis may be associated with impaired working memory in dogs parallels results from studies of human chronic pain disorders. That female dogs may be particularly prone to these effects warrants further investigation.


Assuntos
Dor Crônica , Doenças do Cão , Osteoartrite , Humanos , Cães , Feminino , Animais , Memória de Curto Prazo , Dor Crônica/veterinária , Qualidade de Vida , Memória Espacial , Osteoartrite/complicações , Osteoartrite/veterinária
7.
Compr Psychiatry ; 131: 152464, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38394925

RESUMO

BACKGROUND: The sex-differential prevalence of attention-deficit/hyperactivity disorder (ADHD) varies across the lifespan, but little is known about sex differences in executive functions in adults with ADHD. METHODS: We assessed 261 adults, aged 18-40 years, diagnosed with ADHD (170 males [assigned at birth], aged 25.81 ± 5.49; 91 females, aged 27.76 ± 5.42) and 308 neurotypical adults (176 males, aged 24.62 ± 5.14; 132 female, aged 25.37 ± 5.42) via psychiatric interviews to confirm ADHD and other psychiatric diagnoses. They were assessed by the Cambridge Neuropsychological Testing Automated Battery (CANTAB) on Reaction Time (arousal/processing speed), Rapid Visual Information Processing (sustained attention), Spatial Span (spatial memory), Spatial Working Memory, Intradimentional/Extradimensional Shift (set-shifting), and Stocking of Cambridge (spatial planning). The primary analyses were adjusted for age, full-scale IQ, and co-occurring psychiatric conditions. RESULTS: Adults with ADHD had various co-occurring psychiatric conditions without sex differences in ADHD-neurotypical differences. Both adult males and females with ADHD performed poorer in all CANTAB tasks than same-sex neurotypical adults. Significant sex-moderating effects were observed in neuropsychological performance, including greater ADHD-neurotypical differences in arousal for females than males and in location memory for spatial tasks in males than females. CONCLUSION: There were no sex-moderating effects in the presence of co-occurring psychiatric conditions in adult ADHD. However, there were sex-moderating effects on how ADHD related to neuropsychological functioning in adulthood. ADHD was associated with more challenges in arousal/processing speed in females and more challenges in strategy use or inhibition in spatial memory in males.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Adulto , Recém-Nascido , Humanos , Masculino , Feminino , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Transtorno do Deficit de Atenção com Hiperatividade/complicações , Função Executiva/fisiologia , Memória de Curto Prazo/fisiologia , Testes Neuropsicológicos , Atenção
8.
J Alzheimers Dis ; 97(4): 1737-1749, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306044

RESUMO

Background: Working memory deficits in Alzheimer's disease (AD) are linked to impairments in the retrieval of stored memory information. However, research on the mechanism of impaired working memory retrieval in Alzheimer's disease is still lacking. Objective: The medial prefrontal cortex (mPFC) and mediodorsal thalamus (MD) are involved in memory retrieval. The purpose of this study is to investigate the functional interactions and information transmission between mPFC and MD in the AD model. Methods: We recorded local field potentials from mPFC and MD while the mice (APP/PS1 transgenic model and control) performed a T-maze spatial working memory task. The temporal dynamics of oscillatory activity and bidirectional information flow between mPFC and MD were assessed during the task phases. Results: We mainly found a significant decrease in theta flow from mPFC to MD in APP/PS1 mice during retrieval. Conclusions: Our results indicate an important role of the mPFC-MD input for retrieval and the disrupted information transfer from mPFC to MD may be the underlying mechanism of working memory deficits in APP/PS1 mice.


Assuntos
Doença de Alzheimer , Memória de Curto Prazo , Camundongos , Animais , Doença de Alzheimer/genética , Córtex Pré-Frontal , Tálamo , Transtornos da Memória/etiologia , Camundongos Transgênicos
9.
Gut Microbes ; 16(1): 2310603, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38332676

RESUMO

Chronic pain is commonly linked with diminished working memory. This study explores the impact of the anesthetic (S)-ketamine on spatial working memory in a chronic constriction injury (CCI) mouse model, focusing on gut microbiome. We found that multiple doses of (S)-ketamine, unlike a single dose, counteracted the reduced spontaneous alteration percentage (%SA) in the Y-maze spatial working memory test, without affecting mechanical or thermal pain sensitivity. Additionally, repeated (S)-ketamine treatments improved the abnormal composition of the gut microbiome (ß-diversity), as indicated by fecal 16S rRNA analysis, and increased levels of butyrate, a key gut - brain axis mediator. Protein analysis showed that these treatments also corrected the upregulated histone deacetylase 2 (HDAC2) and downregulated brain-derived neurotrophic factor (BDNF) in the hippocampi of CCI mice. Remarkably, fecal microbiota transplantation from mice treated repeatedly with (S)-ketamine to CCI mice restored %SA and hippocampal BDNF levels in CCI mice. Butyrate supplementation alone also improved %SA, BDNF, and HDAC2 levels in CCI mice. Furthermore, the TrkB receptor antagonist ANA-12 negated the beneficial effects of repeated (S)-ketamine on spatial working memory impairment in CCI mice. These results indicate that repeated (S)-ketamine administration ameliorates spatial working memory impairment in CCI mice, mediated by a gut microbiota - brain axis, primarily through the enhancement of hippocampal BDNF - TrkB signaling by butyrate.


Assuntos
Dor Crônica , Microbioma Gastrointestinal , Ketamina , Camundongos , Animais , Ketamina/farmacologia , Ketamina/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Memória de Curto Prazo , Dor Crônica/tratamento farmacológico , RNA Ribossômico 16S , Hipocampo/metabolismo , Transtornos da Memória/tratamento farmacológico , Butiratos/farmacologia
10.
Cogn Affect Behav Neurosci ; 24(2): 325-348, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38200282

RESUMO

Concerns about poor animal to human translation have come increasingly to the fore, in particular with regards to cognitive improvements in rodent models, which have failed to translate to meaningful clinical benefit in humans. This problem has been widely acknowledged, most recently in the field of Alzheimer's disease, although this issue pervades the spectrum of central nervous system (CNS) disorders, including neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. Consequently, recent efforts have focused on improving preclinical to clinical translation by incorporating more clinically analogous outcome measures of cognition, such as touchscreen-based assays, which can be employed across species, and have great potential to minimize the translational gap. For aging-related research, it also is important to incorporate model systems that facilitate the study of the long prodromal phase in which cognitive decline begins to emerge and which is a major limitation of short-lived species, such as laboratory rodents. We posit that to improve translation of cognitive function and dysfunction, nonhuman primate models, which have conserved anatomical and functional organization of the primate brain, are necessary to move the field of translational research forward and to bridge the translational gaps. The present studies describe the establishment of a comprehensive battery of touchscreen-based tasks that capture a spectrum of domains sensitive to detecting aging-related cognitive decline, which will provide the greatest benefit through longitudinal evaluation throughout the prolonged lifespan of the marmoset.


Assuntos
Envelhecimento , Callithrix , Pesquisa Translacional Biomédica , Animais , Envelhecimento/fisiologia , Pesquisa Translacional Biomédica/métodos , Masculino , Cognição/fisiologia , Feminino , Modelos Animais de Doenças , Testes Neuropsicológicos/normas , Transtornos Cognitivos/diagnóstico
11.
Cerebellum ; 23(1): 197-203, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36737535

RESUMO

The cerebellum is involved in motor and non-motor functions. Cerebellar lesions can underlie the disruption of various executive functions. The violation of executive functions in cerebellar lesions is a serious problem, since children, after completing treatment, must return to school, finish their education, and get a profession. One of the important executive functions is working memory, which contributes to academic success. Deficits of verbal working memory in cerebellar tumors have been studied, in contrast to visual-spatial working memory. To assess this issue, 101 patients who survived cerebellar tumors and 100 healthy control subjects performed a visual-spatial working memory test. As a result, in children who survived cerebellar tumors, visual-spatial working memory is impaired compared to the control group. Moreover, with age, and hence the time since the end of treatment, the number of elements that children can retain in visual-spatial working memory increases, but still remains smaller compared to the control group. Our findings complement the idea of cerebellar involvement in visual-spatial working memory and suggest that it is disrupted by cerebellar lesions in children.


Assuntos
Neoplasias Cerebelares , Neoplasias Infratentoriais , Criança , Humanos , Memória Espacial , Cerebelo/patologia , Memória de Curto Prazo , Sobreviventes , Testes Neuropsicológicos
12.
Hippocampus ; 34(3): 141-155, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38095152

RESUMO

During decisions that involve working memory, task-related information must be encoded, maintained across delays, and retrieved. Few studies have attempted to causally disambiguate how different brain structures contribute to each of these components of working memory. In the present study, we used transient optogenetic disruptions of rat medial prefrontal cortex (mPFC) during a serial spatial reversal learning (SSRL) task to test its role in these specific working memory processes. By analyzing numerous performance metrics, we found: (1) mPFC disruption impaired performance during only the choice epoch of initial discrimination learning of the SSRL task; (2) mPFC disruption impaired performance in dissociable ways across all task epochs (delay, choice, return) during flexible decision-making; (3) mPFC disruption resulted in a reduction of the typical vicarious-trial-and-error rate modulation that was related to changes in task demands. Taken together, these findings suggest that the mPFC plays an outsized role in working memory retrieval, becomes involved in encoding and maintenance when recent memories conflict with task demands, and enables animals to flexibly utilize working memory to update behavior as environments change.


Assuntos
Memória de Curto Prazo , Córtex Pré-Frontal , Ratos , Animais , Aprendizagem por Discriminação
13.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(6): 1142-1151, 2023 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-38151937

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment, with the predominant clinical diagnosis of spatial working memory (SWM) deficiency, which seriously affects the physical and mental health of patients. However, the current pharmacological therapies have unsatisfactory cure rates and other problems, so non-pharmacological physical therapies have gradually received widespread attention. Recently, a novel treatment using 40 Hz light flicker stimulation (40 Hz-LFS) to rescue the cognitive function of model animals with AD has made initial progress, but the neurophysiological mechanism remains unclear. Therefore, this paper will explore the potential neural mechanisms underlying the modulation of SWM by 40 Hz-LFS based on cross-frequency coupling (CFC). Ten adult Wistar rats were first subjected to acute LFS at frequencies of 20, 40, and 60 Hz. The entrainment effect of LFS with different frequency on neural oscillations in the hippocampus (HPC) and medial prefrontal cortex (mPFC) was analyzed. The results showed that acute 40 Hz-LFS was able to develop strong entrainment and significantly modulate the oscillation power of the low-frequency gamma (lγ) rhythms. The rats were then randomly divided into experimental and control groups of 5 rats each for a long-term 40 Hz-LFS (7 d). Their SWM function was assessed by a T-maze task, and the CFC changes in the HPC-mPFC circuit were analyzed by phase-amplitude coupling (PAC). The results showed that the behavioral performance of the experimental group was improved and the PAC of θ-lγ rhythm was enhanced, and the difference was statistically significant. The results of this paper suggested that the long-term 40 Hz-LFS effectively improved SWM function in rats, which may be attributed to its enhanced communication of different rhythmic oscillations in the relevant neural circuits. It is expected that the study in this paper will build a foundation for further research on the mechanism of 40 Hz-LFS to improve cognitive function and promote its clinical application in the future.


Assuntos
Memória de Curto Prazo , Doenças Neurodegenerativas , Humanos , Adulto , Ratos , Animais , Memória de Curto Prazo/fisiologia , Ratos Wistar , Hipocampo , Córtex Pré-Frontal
14.
Conscious Cogn ; 116: 103585, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37944294

RESUMO

The current study investigated the relationship between private speech usage and cognitive performance in young adults. Participants (n = 103, mean age = 20.21 years) were instructed to complete a visual-spatial working memory task while talking out loud to themselves as much as possible (Private Speech condition). We found that participants performed better on trials for which they produced a greater amount of private speech. To establish causality, we further found that participants performed better in the Private Speech condition than in a condition in which they were instructed to remain silent (Quiet condition). These beneficial effects of private speech were not moderated by task difficulty, which was manipulated by varying image labelability. However, participants who used more private speech during the task, as well as those who reported greater use of self-management private speech in everyday life, showed the greatest benefits. These findings have implications for real-world educational/instructional settings.


Assuntos
Percepção da Fala , Fala , Humanos , Adulto Jovem , Adulto , Memória de Curto Prazo , Memória Espacial , Cognição
15.
Hum Brain Mapp ; 44(18): 6308-6325, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37909347

RESUMO

Functional neuroimaging serves as a tool to better understand the cerebral correlates of atypical behaviors, such as learning difficulties. While significant advances have been made in characterizing the neural correlates of reading difficulties (developmental dyslexia), comparatively little is known about the neurobiological correlates of mathematical learning difficulties, such as developmental dyscalculia (DD). Furthermore, the available neuroimaging studies of DD are characterized by small sample sizes and variable inclusion criteria, which make it problematic to compare across studies. In addition, studies to date have focused on identifying single deficits in neuronal processing among children with DD (e.g., mental arithmetic), rather than probing differences in brain function across different processing domains that are known to be affected in children with DD. Here, we seek to address the limitations of prior investigations. Specifically, we used functional magnetic resonance imaging (fMRI) to probe brain differences between children with and without persistent DD; 68 children (8-10 years old, 30 with DD) participated in an fMRI study designed to investigate group differences in the functional neuroanatomy associated with commonly reported behavioral deficits in children with DD: basic number processing, mental arithmetic and visuo-spatial working memory (VSWM). Behavioral data revealed that children with DD were less accurate than their typically achieving (TA) peers for the basic number processing and arithmetic tasks. No behavioral differences were found for the tasks measuring VSWM. A pre-registered, whole-brain, voxelwise univariate analysis of the fMRI data from the entire sample of children (DD and TA) revealed areas commonly associated with the three tasks (basic number processing, mental arithmetic, and VSWM). However, the examination of differences in brain activation between children with and without DD revealed no consistent group differences in brain activation. In view of these null results, we ran exploratory, Bayesian analyses on the data to quantify the amount of evidence for no group differences. This analysis provides supporting evidence for no group differences across all three tasks. We present the largest fMRI study comparing children with and without persistent DD to date. We found no group differences in brain activation using univariate, frequentist analyses. Moreover, Bayesian analyses revealed evidence for the null hypothesis of no group differences. These findings contradict previous literature and reveal the need to investigate the neural basis of DD using multivariate and network-based approaches to brain imaging.


Assuntos
Discalculia , Memória de Curto Prazo , Criança , Humanos , Memória de Curto Prazo/fisiologia , Imageamento por Ressonância Magnética , Discalculia/diagnóstico por imagem , Discalculia/complicações , Teorema de Bayes , Encéfalo/diagnóstico por imagem
16.
BMC Sports Sci Med Rehabil ; 15(1): 133, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37845733

RESUMO

BACKGROUND: Various neurocognitive tests have shown that cycling enhances cognitive performance compared to resting. Event-related potentials (ERPs) elicited by an oddball or flanker task have clarified the impact of dual-task cycling on perception and attention. In this study, we investigate the effect of cycling on cognitive recruitment during tasks that involve not only stimulus identification but also semantic processing and memory retention. METHODS: We recruited 24 healthy young adults (12 males, 12 females; mean age = 22.71, SD = 1.97 years) to perform three neurocognitive tasks (namely color-word matching, arithmetic calculation, and spatial working memory) at rest and while cycling, employing a within-subject design with rest/cycling counterbalancing. RESULTS: The reaction time on the spatial working memory task was faster while cycling than at rest at a level approaching statistical significance. The commission error percentage on the color-word matching task was significantly lower at rest than while cycling. Dual-task cycling while responding to neurocognitive tests elicited the following results: (a) a greater ERP P1 amplitude, delayed P3a latency, less negative N4, and less positivity in the late slow wave (LSW) during color-word matching; (b) a greater P1 amplitude during memory encoding and smaller posterior negativity during memory retention on the spatial working memory task; and (c) a smaller P3 amplitude, followed by a more negative N4 and less LSW positivity during arithmetic calculation. CONCLUSION: The encoding of color-word and spatial information while cycling may have resulted in compensatory visual processing and attention allocation to cope with the additional cycling task load. The dual-task cycling and cognitive performance reduced the demands of semantic processing for color-word matching and the cognitive load associated with temporarily suspending spatial information. While dual-tasking may have required enhanced semantic processing to initiate mental arithmetic, a compensatory decrement was noted during arithmetic calculation. These significant neurocognitive findings demonstrate the effect of cycling on semantic-demand and memory retention-demand tasks.

17.
Front Psychol ; 14: 1141628, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663362

RESUMO

The Cambridge Neuropsychological Test Automated Battery (CANTAB) is a computerized and child-friendly neuropsychological assessment battery that includes subtests aimed at evaluating some aspects of executive functions. Using the CANTAB, this study aims to establish normative values based on the aspects of executive functions among school-aged children in Japan. The participants included 234 children (135 boys and 99 girls aged 6-12 years) enrolled in regular classes, without any clinical records of developmental disorders or educational support. The participants were grouped according to age (6-7, 8-9, and 10-12 years). Four CANTAB subtests, including spatial working memory (SWM) to assess spatial working memory, Stockings of Cambridge (SOC) to evaluate planning, intra/extradimensional set shift (IED) to evaluate attentional set shifting and flexibility, and stop signal task (SST) to evaluate inhibition, were administered to each participant. The results showed that performance in all the CANTAB subtests administered changed with age. Among the subtests, compared with performances in the SOC and IED, those in the SWM and SST improved earlier, thereby indicating that spatial working memory and inhibition develop earlier than planning as well as attentional set shifting and flexibility. Additionally, in the SST subtest, girls made fewer errors than boys did in the 6-7 years group. This study presents normative data of four CANTAB subtests according to age and sex among school-aged children in Japan. We expect that the findings will be used to develop effective tools for the early detection of and support for children with executive dysfunction.

18.
Psychon Bull Rev ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723334

RESUMO

Studies using a relatedness judgement task have found differences between prime-target word pairs that vary in the degree of semantic relatedness. However, the influence of working memory load on semantic processing in this task and the role of the type of working memory task have not yet been investigated. The present study therefore investigated for the first time the effect of working memory load (low vs. high) and working memory type (verbal vs. spatial) on semantic relatedness judgements. Semantically strongly related (e.g., hip - KNEE), weakly related (e.g., muscle - KNEE) and unrelated (e.g., office - KNEE) Polish word pairs were presented in an experiment involving a dual working memory and semantic relatedness task. The data revealed that, relative to semantically unrelated word pairs, responses were faster for strongly related pairs but slower for weakly related pairs. Importantly, the verbal working memory task decreased facilitation for strongly related pairs and increased inhibition for weakly related pairs relative to the spatial working memory task. Furthermore, working memory load impacted only weakly related pairs in the verbal but not in the spatial working memory task. These results show that working memory type and load influence semantic relatedness judgements, but the direction and size of the impact depend on the strength of semantic relations.

19.
Behav Brain Funct ; 19(1): 14, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658396

RESUMO

OBJECTIVE: Working memory (WM) deficits have frequently been linked to attention deficit hyperactivity disorder (ADHD). Despite previous studies suggested its high heritability, its genetic basis, especially in ADHD, remains unclear. The current study aimed to comprehensively explore the genetic basis of visual-spatial working memory (VSWM) in ADHD using wide-ranging genetic analyses. METHODS: The current study recruited a cohort consisted of 802 ADHD individuals, all met DSM-IV ADHD diagnostic criteria. VSWM was assessed by Rey-Osterrieth complex figure test (RCFT), which is a widely used psychological test include four memory indexes: detail delayed (DD), structure delayed (SD), structure immediate (SI), detail immediate (DI). Genetic analyses were conducted at the single nucleotide polymorphism (SNP), gene, pathway, polygenic and protein network levels. Polygenic Risk Scores (PRS) were based on summary statistics of various psychiatric disorders, including ADHD, autism spectrum disorder (ASD), major depressive disorder (MDD), schizophrenia (SCZ), obsessive compulsive disorders (OCD), and substance use disorder (SUD). RESULTS: Analyses at the single-marker level did not yield significant results (5E-08). However, the potential signals with P values less than E-05 and their mapped genes suggested the regulation of VSWM involved both ocular and neural system related genes, moreover, ADHD-related genes were also involved. The gene-based analysis found RAB11FIP1, whose encoded protein modulates several neurodevelopment processes and visual system, as significantly associated with DD scores (P = 1.96E-06, Padj = 0.036). Candidate pathway enrichment analyses (N = 53) found that forebrain neuron fate commitment significantly enriched in DD (P = 4.78E-04, Padj = 0.025), and dopamine transport enriched in SD (P = 5.90E-04, Padj = 0.031). We also observed a significant negative relationship between DD scores and ADHD PRS scores (P = 0.0025, Empirical P = 0.048). CONCLUSIONS: Our results emphasized the joint contribution of ocular and neural genes in regulating VSWM. The study reveals a shared genetic basis between ADHD and VSWM, with GWAS indicating the involvement of ADHD-related genes in VSWM. Additionally, the PRS analysis identifies a significant relationship between ADHD-PRS and DD scores. Overall, our findings shed light on the genetic basis of VSWM deficits in ADHD, and may have important implications for future research and clinical practice.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtorno Depressivo Maior , Criança , Humanos , Memória de Curto Prazo , Olho , Transtornos da Memória
20.
Int J Psychol ; 58(6): 584-593, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37533291

RESUMO

Problem-solving skills are very important in our daily life. Almost all problem-solving studies have addressed the cognitive correlates of solving closed problems, but only limited studies have investigated the cognitive mechanisms of solving open problems. The current study aimed to systematically examine differences between the cognitive mechanisms used for solving open and closed problems. In total, the abilities of 142 high school students to solve open and closed problems were assessed, as were a series of general cognitive abilities as controlled variates. Analogical reasoning uniquely contributed to solving both open and closed math problems, after controlling for age, gender, and inductive reasoning. Reactive cognitive flexibility (measured using the Wisconsin card sorting test) and spatial working memory uniquely correlated only with solving open and closed math problems, respectively. These findings suggest that the cognitive processes used to solve open and closed math problems differ. Open and closed math problems appear to require more reactive cognitive flexibility for generation and more memory for retrieval, respectively.


Assuntos
Memória de Curto Prazo , Resolução de Problemas , Humanos , Estudantes , Matemática , Cognição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...